Бетон
Бето́н (от фр. béton) — искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной, тщательно перемешанной и уплотнённой смеси из минерального (например, цемент) или органического вяжущего вещества, крупного или мелкого заполнителей, воды[1]. В ряде случаев может иметь в составе специальные добавки, а также не содержать воды (например, асфальтобетон).
В строительстве наиболее широко используют бетоны, изготовленные на цементах или других неорганических вяжущих. Эти бетоны обычно затворяют водой. Цемент и вода являются активными составляющими бетона; в результате реакции между ними образуется цементный камень, скрепляющий зерна заполнителя в монолит.
На органических вяжущих веществах (битум, минеральные смолы) бетонную смесь получают без введения воды, что обеспечивает высокую плотность и непроницаемость бетонов.
История[править | править код]
Наиболее ранний бетон, обнаруженный археологами при раскопках в поселке Лепенски Вир (Сербия), можно отнести к 5600 году до н. э. В одной из хижин древнего поселения из бетона, замешанного на гравии и местной извести, был изготовлен пол толщиной 25 см[2][3].
Широко бетон использовался в Древнем Риме[2]. Италия — вулканическая страна, в которой легко доступны компоненты, из которых может быть приготовлен бетон, включая пуццоланы и лавовый щебень. Римляне использовали бетон в массовом строительстве общественных зданий и сооружений, включая Пантеон, купол которого до сих пор является наиболее крупным в мире выполненным из неармированного бетона. При этом в восточной части государства эта технология не получила распространения, там в строительстве традиционно использовался камень, а затем и дешёвая плинфа — род кирпича.
Вследствие упадка Западной Римской империи широкомасштабное строительство монументальных зданий и сооружений сошло на нет, что сделало использование бетона нецелесообразным и в сочетании с общей деградацией ремесла и науки привело к утрате технологии его производства. В период раннего Средневековья единственными крупными архитектурными объектами были соборы, которые возводились из природного камня.
В середине XVIII века английский инженер Джон Смитон изобрел способ изготовления цемента, способного твердеть под водой. Для этого он использовал известняк, содержащий глину. Он применил этот материал при строительстве маяка Эддистон в 1759 году[4]. Патент на «римский цемент» получил в 1796 году Джеймс Паркер . Путем обжига смеси из глины и извести Паркер получил романцемент — первую в истории марку цемента. Смешанный в определенных пропорциях с гравием, песком и водой такой цемент и образовывал бетон.[5] В первой половине XIX века многими исследователями и промышленниками был разработан портландцемент современного типа. Патент на портландцемент получил в 1824 году Джозеф Аспдин , в 1844 году Иcаак Чарльз Джонсон улучшил портландцемент Аспдина. В 1817 году Луи Вика изобрёл цементный клинкер. Параллельно росту производства портландцемента происходило расширение использования цементных растворов и бетонов в строительстве.
Мировыми лидерами в производстве бетона являются Китай (430 млн м³ в 2006 г.)[6] и США (345 млн м³ в 2005 г.[7] и 270 млн м³ в 2008 г.)[6]. В России в 2008 г. было произведено 52 млн м³ бетона[6].
Классификация и виды бетона[править | править код]
Согласно ГОСТ 25192-2012 «Бетоны. Классификация и общие технические требования»[8] и ГОСТ 7473-2010 «Смеси бетонные. Технические условия»[9], классификация бетонов (за исключением бетонов на битумных вяжущих — асфальтобетонов) производится по основному назначению, виду вяжущего вещества, виду заполнителей, структуре и условиям твердения:
- По назначению различают:
- бетоны обычные (для промышленных и гражданских зданий)
- специальные — гидротехнические, дорожные, теплоизоляционные, декоративные, а также бетоны специального назначения (химически стойкие, жаростойкие, звукопоглощающие, для защиты от ядерных излучений и др.).
- По виду вяжущего вещества различают цементные, известковые, силикатные, гипсовые, шлаковые (шлакощелочные и др.), специальные (полимербетоны, бетоны на магнезиальном вяжущем).
- По виду заполнителей различают бетоны на плотных, пористых или специальных заполнителях.
- По структуре различают бетоны плотной, поризованной, ячеистой (ячеистый бетон) или крупнопористой структуры.
- По условиям твердения бетоны подразделяют на твердеющие в естественных условиях, в условиях тепловлажностной обработки при атмосферном давлении или в условиях тепловлажностной обработки при давлении выше атмосферного (автоклавного твердения).
- По средней плотности бетоны подразделяют на:
- особо тяжёлый (плотность свыше 2500 кг/м³) — баритовый, магнетитовый, лимонитовый;
- тяжёлый (плотность 2000—2500 кг/м³);
- облегчённые (плотность 1800—2200 кг/м³);
- лёгкий (плотность 800—2000 кг/м³) — керамзитобетон, пенобетон, газобетон, пемзобетон, арболит, вермикулитовый, перлитовый;
- особо лёгкий (плотность менее 800 кг/м³) — полистиролбетон.
Значения начального модуля упругости бетона при сжатии и растяжении Eb приведены в таблице 6.11 СП 63.1330.2012, в E·10-3, МПа.[10]
Производство бетона[править | править код]
Цементобетон производится смешиванием цемента, песка, щебня и воды (соотношение их зависит от марки цемента, фракции и влажности песка и щебня), а также небольших количеств добавок (пластификаторы, гидрофобизаторы, и т. д.). Цемент и вода являются главными связующими компонентами при производстве бетона. Например, при применении цемента марки 400 для производства бетона марки 200 используется соотношение 1:3:5:0,5. Если же применяется цемент марки 500, то при этом условном соотношении получается бетон марки 350. Соотношение воды и цемента («водоцементное соотношение», «водоцементный модуль»; обозначается «В/Ц») — важная характеристика бетона. От этого соотношения напрямую зависит прочность бетона: чем меньше В/Ц, тем прочнее бетон. Теоретически для гидратации цемента достаточно В/Ц = 0,2, однако у такого бетона слишком низкая пластичность, поэтому на практике используются В/Ц = 0,3—0,5 и выше.
Распространённой ошибкой при кустарном производстве бетона является чрезмерное добавление воды, которое увеличивает подвижность бетона, но в несколько раз снижает его прочность, потому очень важно точно соблюсти водоцементное соотношение, которое рассчитывается по таблицам в зависимости от используемой марки цемента[11].
Заполнители бетона[править | править код]
В качестве заполнителя могут использоваться природные или искусственные сыпучие каменные материалы. Занимая в бетоне до 80—85 % его объёма, заполнители образуют жёсткий скелет бетона, уменьшая усадку и предотвращая образование усадочных трещин.
В зависимости от размера зёрен заполнитель делят на мелкий (песок) и крупный (щебень и гравий).
Заполнители самовосстанавливающегося бетона могут быть химические (на основе битума), и органические (капсулы с кальцийпродуцирующими бактериями). Такой самовосстанавливающийся бетон перспективен для строительства, например, мостов. Результаты испытаний показывают почти полное залечивание трещин в течение примерно 4 недель[12].
Подбор состава бетона[править | править код]
Одной из важнейших составляющих бетонной смеси является песок. Для приготовления бетона лучше использовать природный песок от среднего до крупного. Крупность песка и его соотношение с крупным заполнителем (щебнем или гравием в тяжёлом бетоне, керамзитом — в лёгком) в составе бетонной смеси влияет на подвижность и количество цемента. Чем мельче песок, тем больше требуется минерального заполнителя и воды. Важнейшим ограничением при использовании природного песка является ограничение на наличие в составе песка глины или глинистых частиц. На прочность бетона мелкие (глинистые) частицы влияют очень сильно. Даже незначительное их количество приводит к существенному снижению прочности бетона. Поэтому при отсутствии природного песка без глинистых частиц имеющийся в наличии песок улучшается (обогащается) с помощью следующих процедур: промывки песка; разделения песка на фракции в потоке воды; выделения из песка нужной фракции; смешивания песка, имеющегося в зоне выполнения работ, с привозным высококачественным песком.
После обогащения и подготовки песок должен удовлетворять условиям, определяемым так называемой стандартной областью просеивания. Зерновой состав, определяемый просеиванием песка через сита с разными отверстиями, должен укладываться в область, показанную на рисунке штрихами. Можно использовать песок с размерами частиц с учётом и не заштрихованной области, но только для бетонов марки 150 и ниже[13].
Вместо песка можно успешно использовать отходы производства металлургической, энергетической, горнорудной, химической и других отраслей промышленности[14].
Укладка, уплотнение, затвердевание[править | править код]
Бетонная смесь после приготовления и укладки должна быть как можно быстрее уплотнена. В процессе уплотнения избавляются от воздуха в воздушных карманах, а также перераспределяют цементное молоко для более плотного соприкосновения с твёрдыми фракциями бетона. Это приводит к повышению прочности готового бетона. Для уплотнения используется вибрация. При виброуплотнении в монолитном строительстве используют ручные вибраторы, в блочном — вибропрессы. Температура отвердевания — от +5 °C до +30 °C.
При бетонных работах возникают технологические остатки бетона в бетононасосе или миксере при их сливе на землю возникают локальные загрязнения. Для эффективного использования остатков бетона[15] возможно заранее подготовить небольшие формы.
Эксплуатационные свойства[править | править код]
Информация в этой статье или некоторых её разделах устарела. |
Прочность на сжатие[править | править код]
Основной показатель, которым характеризуется бетон — прочность на сжатие. По ней устанавливается класс бетона.
Класс бетона В — это кубиковая (призменная) прочность в МПа, принимаемая с гарантированной обеспеченностью (доверительной вероятностью) 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в пяти случаях можно ожидать его не выполненным.
Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции», класс обозначается латинской буквой «B» и цифрами, показывающими выдерживаемое давление в мегапаскалях (МПа). Например, обозначение В25 означает, что стандартные кубики (100×100×100 мм), изготовленные из бетона данного класса, в 95 % случаев выдерживают давление 25 МПа. Для расчёта показателя прочности необходимо учитывать и коэффициенты, например, для бетона класса В25 по прочности на сжатие нормативное сопротивление Rbn, применяемое в расчётах, составляет 18,5 МПа, а расчётное сопротивление Rb — 14,5 МПа.
Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение, назначается при проектировании, исходя из возможных реальных сроков загрузки конструкции проектными нагрузками, способа возведения, условий твердения бетона. При отсутствии этих данных класс бетона устанавливается в возрасте 28 суток.
Наряду с классами, прочность бетона также задаётся марками, обозначаемыми латинской буквой «М» и цифрами от 50 до 1000, означающими предел прочности на сжатие в кгс/см². ГОСТ 26633-91 «Бетоны тяжёлые и мелкозернистые. Технические условия» устанавливает следующее соответствие между марками и классами при коэффициенте вариации прочности бетона 13,5 %:
Класс бетона по прочности | Ближайшая марка бетона по прочности | Современное международное обозначение[16] |
---|---|---|
B3,5 | М50 | — |
B5 | М75 | — |
B7,5 | М100 | — |
B10 | М150 | С8/10 |
B12,5 | М150 | С10/12,5 |
B15 | М200 | С12/15 |
B20 | М250 | С16/20 |
B22,5 | М300 | С18/22,5 |
B25 | М350 | С20/25 |
B27,5 | М350 | С22/27,5 |
B30 | М400 | С25/30 |
B35 | М450 | С28/35 |
— | — | С30/37 |
B40 | М550 | С32/40 |
B45 | М600 | С35/45 |
B50 | М700 | С40/50 |
B55 | М750 | С45/55 |
B60 | М800 | С50/60 |
— | — | С55/67 |
B70 | М900 | — |
— | — | С60/75 |
B80 | М1000 | — |
— | — | С70/85 |
B90 | — | — |
— | — | С80/95 |
B100 | — | — |
— | — | С90/105 |
B110 | — | — |
B120 | — | — |
Из актуальной версии ГОСТ 26633-2015 данная таблица изъята.
До момента испытаний образцы бетона должны храниться в камерах нормального твердения, проверка прочности готовой конструкции может осуществляться неразрушающими методами контроля с помощью молотков Кашкарова, Физделя или Шмидта, склерометров различных конструкций, ультразвуковых приборов и других.
Удобоукладываемость[править | править код]
Согласно ГОСТ 7473-2010, по удобоукладываемости (обозначается буквой «П») различают бетоны:
- сверхжёсткие (жёсткость более 50 секунд);
- жёсткие (жёсткость от 5 до 50 секунд);
- подвижные (жёсткость менее 4 секунд, подразделяются по осадке конуса).
ГОСТ устанавливает следующие обозначения бетонных смесей по удобоукладываемости:
Марка по удобоукладываемости | Норма по жёсткости, с | Осадка конуса, см |
---|---|---|
Сверхжёсткие смеси | ||
СЖ3 | Более 100 | - |
СЖ2 | 51—100 | - |
СЖ1 | менее 50 | - |
Жёсткие смеси | ||
Ж4 | 31—60 | - |
Ж3 | 21—30 | - |
Ж2 | 11—20 | - |
Ж1 | 5—10 | - |
Подвижные смеси | ||
П1 | 4 и менее | 1—4 |
П2 | - | 5—9 |
П3 | - | 10—15 |
П4 | - | 16—20 |
П5 | - | 21 и более |
Показатель удобоукладываемости имеет решающее значение при бетонировании с помощью бетононасоса. Для прокачки насосом используют смеси с показателем удобоукладываемости не ниже П2.
Другие важные показатели[править | править код]
- Прочность на изгиб.
- Морозостойкость бетона — обозначается латинской буквой «F» и цифрами от 50 до 1000, означающими количество циклов замерзания-оттаивания, которые способен выдержать бетон.
- Водонепроницаемость — обозначается латинской буквой «W» и цифрами от 2 до 20, обозначающими давление воды, которое должен выдержать образец-цилиндр данной марки.
Для испытаний бетона на морозостойкость и водонепроницаемость используются испытательные климатические камеры.
Добавки для бетона[править | править код]
Применение добавок позволяет существенным образом влиять на смеси, бетоны и растворы придавая им специфические свойства. ГОСТ 24211-2008 «Добавки для бетонов и строительных растворов. Общие технические условия» предлагает следующую классификацию добавок:
- Добавки, регулирующие свойства бетонных и растворных смесей:
- пластифицирующие добавки повышают подвижность бетонной смеси, тем самым позволяя получить заданную консистенцию при меньшем расходе воды;
- водоредуцирующие добавки позволяют получить высокоподвижные смеси с низким водосодержанием, следовательно, с относительно небольшим объёмом цементного камня;
- стабилизирующие добавки обеспечивают сохранность консистенции, тем самым предотвращая расслоение смеси при укладке и уплотнении;
- добавки регулирующие сохраняемость подвижности смеси востребованы в жаркое время года, при необходимости длительной транспортировки смеси;
- добавки увеличивающие воздухо- (газо) содержание смеси или воздухововлекающие добавки повышают морозостойкость, водонепроницаемость и устойчивость к коррозии, но несколько снижают прочность будущей конструкции;
- Добавки, регулирующие свойства бетонов и растворов:
- регулирующие кинетику твердения бетона:
- замедлители применяют, когда возникает необходимость увеличить время до начала схватывания бетонной смеси в случае длительной транспортировки;
- ускорители сокращают время твердения бетона;
- повышающие прочность бетона — добавки этого типа увеличивают стойкость бетона к истиранию, ударам и раскалыванию;
- снижающие проницаемость — вещества, повышающие плотность структуры бетона;
- добавки повышающие защитные свойства по отношению к стальной арматуре применяют для предотвращения коррозии при непосредственном контакте бетона с арматурой в железобетонных конструкциях;
- добавки повышающие морозостойкость увеличивают количество циклов попеременного замерзания и оттаивания бетона без потери прочностных свойств;
- добавки повышающие коррозионную стойкость бетона в условиях среды, вызывающей ухудшение свойств материала;
- расширяющие добавки применяют с целью компенсировать усадку бетона в процессе эксплуатации конструкции;
- регулирующие кинетику твердения бетона:
- Добавки, придающие бетонам и растворам специальные свойства:
- противоморозные добавки при растворении в воде сильно понижают температуру замерзания смеси, предотвращая её замерзание при транспортировке, а также препятствуют промерзанию свежеуложенного бетона в холодное время года;
- гидрофобизирующие добавки придают стенкам пор бетона водоотталкивающие свойства, увеличивая водонепроницаемость бетона, а также препятствует возникновению капиллярного эффекта;
- фотокаталитические добавки придают бетону свойства самоочищаться, в результате такой реакции происходит разложение практически любых встречаемых на стенах всякого сооружения загрязнений — пыли, плесени, бактерий, частиц выхлопных газов и т. д.
- Минеральные добавки для бетона:
- тип I — активные минеральные:
- обладающие вяжущими свойствами (например, микрокремнезем, метакаолин);
- обладающие пуццолановой активностью;
- обладающие одновременно вяжущими свойствами и пуццолановой активностью.
- тип II — инертные минеральные.
- тип I — активные минеральные:
Обозначение бетонной смеси[править | править код]
Согласно ГОСТ 7473-2010, обозначение бетонной смеси должно состоять из:
- типа бетонной смеси (сокр. обозначение);
- класса по прочности;
- марки по удобоукладываемости,
- при необходимости, марки морозостойкости, марки водонепроницаемости, средней плотности (для лёгкого бетона);
- обозначение стандарта.
Например, готовая к применению бетонная смесь тяжёлого бетона класса по прочности на сжатие В25, марки по удобоукладываемости П3, морозостойкости F200 и водонепроницаемости W6 должна обозначаться как БСТ В25 П3 F200 W6 ГОСТ 7473-2010. В коммерческой практике принято также выделять в отдельную категорию высокопрочные спецбетоны ВС и бетоны с применением щебня мелкой фракции СМ (т. н. «семечка»).
Защита бетона[править | править код]
Гидроизоляционную защиту бетона подразделяют на первичную и вторичную. К первичной относят мероприятия, обеспечивающие непроницаемость конструкционного материала сооружения. Ко вторичной — дополнительное покрытие поверхностей конструкций гидроизоляционными материалами (мембранами) со стороны непосредственного воздействия агрессивной среды[17].
Меры первичной защиты предполагают использование материалов, имеющих повышенную коррозионную стойкость в агрессивной среде, а также обеспечивающих низкую проницаемость бетона. К мерам первичной защиты относятся также вопросы выбора рациональных геометрических очертаний и форм конструкций, назначение категорий трещиностойкости и предельно допустимой ширине раскрытия трещин, рассмотрение сочетания нагрузок и определение непродолжительного раскрытия трещин, назначение толщины защитного слоя бетона с учётом его непроницаемости. Также к первичной защите можно отнести применение интегральных капиллярных материалов — гидроизоляция строительными смесями проникающего действия. При этом уплотняется структура бетона и происходит увеличение водонепроницаемости, морозостойкости, прочности на сжатие и коррозионной стойкости на весь срок службы.
Задача вторичной защиты — не допустить или ограничить возможность контакта агрессивной среды и бетона. В качестве вторичной защиты используют обеспыливающие пропитки, тонкослойные покрытия, наливные полы и высоконаполненные покрытия. Чаще всего в качестве связующего материала при производстве полимерных составов применяются эпоксидные, полиуретановые и полиэфирные компоненты. Механизм защиты бетонного основания заключается в уплотнении поверхностного слоя и изоляции поверхности.
Проблема защиты бетона от химической и электрокоррозии стоит особенно остро для объектов железнодорожного транспорта, где блуждающие токи утечки сочетаются с агрессивным химическим воздействием.
Прогрев бетона зимой[править | править код]
Существенный недостаток бетона выявляется при строительстве в зимнее время, когда из-за низких температур прочность возводимых бетонных сооружений находится под угрозой. По этой причине возникает потребность в принудительном прогреве бетона.
Основные и дополнительные способы прогрева бетона[18]:
- Прогрев проводом. Доступный метод, который обеспечивает отличный прогрев помещения.
- Прогрев электродами. Обеспечивает быстрое нагревание в силу распространения сети электродов.
- пластинчатые электроды. Они соединяются с бетонным раствором изнутри — крепятся на опалубку. Передают тепло непосредственно бетону.
- полосовые электроды. Крепятся с обеих сторон.
- струнные электроды. Чаще используются в колоннах и крепятся в центральной части.
- стержневые электроды. Применяются там, где невозможно использование других электродов.
- Станция прогрева бетона. Используется в тех случаях, когда бетон планируется прогревать проводом. Мощность станции напрямую влияет на уровень прогрева бетона. Управляется вручную или автоматически.
- Греющая опалубка. Считается более выгодным и долгосрочным решением для обогрева бетона, чем прогрев при помощи проводов.
- Индукционный метод. При таком выборе важно строго рассчитать количество витков и соотнести их с объёмом металла конструкции.
- Инфракрасный метод. Эффективный и простой способ прогрева, но достаточно дорогостоящий.
- Бетонирование в тепляках и термоматы. Трудоёмкий и дорогой метод, который не подходит для больших помещений с колоннами. В таких случаях монолитные колонны или стены лучше защищать пологами, натянув их на строительные леса, поставить термогенераторы принудительного типа.
- Набор температуры влияет на набор прочности и сроки снятия опалубки, для этого в зимний период так же необходимо следить за температурой бетона на поверхности и внутри ядра. Поэтому в конструкции делают термоскважины или монтируют термопары. При демонтаже опалубки разница температур окружающей среды и ядра бетонной конструкции не должна превышать 15 градусов.
См. также[править | править код]
- Стойкость бетона
- Бетононасос
- Автобетоносмеситель
- Бетоносмесительный завод
- Конус Абрамса
- Минеральные добавки для цементов
- Железобетон
Примечания[править | править код]
- ↑ Баженов Ю. М. Технология бетона. — М.: Издательство АСВ, 2002. — 500 с. — ISBN 5-93093-138-0.
- ↑ 1 2 Кочетов В. А. Римский бетон. — М.: Стройиздат, 1991. — 111 с. — ISBN 5-274-00044-4.
- ↑ Существует мнение, что природный цемент и бетон на его основе использовался при строительстве храмового комплекса Гёбекли-Тепе, возраст которого оценивается в 12 тыс. лет. В Сирии и Иордании сохранились подземные резервуары для воды из природного бетона, датируемые восьмым тысячелетием до н. э. // «The hidden strengths of unloved concrete» Архивная копия от 16 января 2017 на Wayback Machine, BBC News, 16.01.2017.
- ↑ История бетона
- ↑ Из истории появления бетона и бетономешалок . ipcmagazine.ru. Дата обращения: 5 октября 2023.
- ↑ 1 2 3 Бетонная статистика: сравнение стран Европы, России и США . Дата обращения: 5 марта 2010. Архивировано 15 марта 2010 года.
- ↑ European Ready Mixed Concrete Industry Statistics based on the Y2007 production data Архивировано 26 марта 2012 года.
- ↑ ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования . Дата обращения: 21 сентября 2021. Архивировано 21 сентября 2021 года.
- ↑ ГОСТ 7473-2010 Смеси бетонные. Технические условия . Дата обращения: 14 января 2022. Архивировано 7 января 2022 года.
- ↑ NormaCS ~ СП 63.13330.2012 ~ Модуль упругости бетона СП 63.13330.2012. 10^-3 или 10^+3 ? Дата обращения: 15 мая 2023. Архивировано 15 мая 2023 года.
- ↑ Изготовление бетона своими руками, водоцементное соотношение, пропорции . Дата обращения: 4 марта 2014. Архивировано из оригинала 22 февраля 2014 года.
- ↑ "Smart materials: From tiny robots to colour-swapping clothes". BBC News. 2021-02-18. Архивировано из оригинала 22 августа 2021. Дата обращения: 22 августа 2021.
- ↑ П. П. Бородавкин Зерновой состав песка для приготовления бетонной смеси (недоступная ссылка)
- ↑ Туркина И. А. Бетоны на отходах производства // Технологии бетонов. — 2013. — № 8 (85). — С. 42—44.
- ↑ Куда деть остатки бетона из бетононасоса и миксера? (рус.). Дата обращения: 15 июня 2021. Архивировано 5 января 2022 года.
- ↑ Классы бетона по прочности . Дата обращения: 22 августа 2021. Архивировано 22 августа 2021 года.
- ↑ А. Н. Клюев, В. Б. Семёнов. Бесцементный бетон на основе щёлочесодержащих отходов нефтехимической промышленности Архивировано 3 апреля 2008 года.
- ↑ Прогрев бетона зимой: основные способы Архивировано 3 сентября 2014 года.
Литература[править | править код]
- Бетон // Военная энциклопедия : [в 18 т.] / под ред. В. Ф. Новицкого … [и др.]. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.
- Бетон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Мощанский Н. А.. Плотность и стойкость бетонов. - М.: Госстройиздат, 1951. - 175 с.
- Пирожников Л. Б. Занимательно о бетоне / Под. ред. А. Н. Попова. — 2-е изд., доп. — М.: Стройиздат, 1986. — 104 с.
- Дворкин Л. И., Дворкин О. Л. Специальные бетоны. — М.: Инфра-Инженерия, 2012. — ISBN 978-5-9729-0046-6.
- Мещеряков Ю. Г., Фёдоров С. В. Строительные материалы : учебник для студентов ВО, обучающихся по направлению подготовки 08.03.01 Строительство / АНО ДПО Техническая академия Росатома. — СПб., 2019. — ISBN 978-5-906580-11-5
- Мещеряков Ю. Г., Фёдоров С. В., Сучков В. П. Гидравлические вяжущие. Бетоны. Строительные растворы : учебное пособие / АНО ДПО Техническая академия Росатома. — СПб., 2019. — ISBN 978-5-906580-06-1