Задачи тысячелетия
Задачи тысячелетия — семь математических проблем, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США. Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия.
По состоянию на 2024 год только одна из семи задач тысячелетия (гипотеза Пуанкаре) решена .
Решённые задачи[править | править код]
Гипотеза Пуанкаре[править | править код]
Считается наиболее известной проблемой топологии. Неформально говоря, она утверждает, что всякий трёхмерный «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации.
Премия за доказательство гипотезы Пуанкаре присуждена в 2010 году российскому математику Григорию Перельману[1], опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы, но учёный отказался принять эту премию, как раньше отказался от Филдсовской премии[2].
Нерешённые задачи[править | править код]
Равенство классов P и NP[править | править код]
Если положительный ответ на какой-то вопрос можно быстро (за полиномиальное время) проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи второго типа относятся к классу P, первого — к классу NP. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.
Гипотеза Ходжа[править | править код]
Важная проблема алгебраической геометрии. Гипотеза описывает классы когомологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.
Гипотеза Римана[править | править код]
Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Её доказательство или опровержение будет иметь далеко идущие последствия для теории чисел, особенно в области распределения простых чисел. Гипотеза Римана была восьмой в списке проблем Гильберта. В случае публикации контрпримера к гипотезе Римана учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы или же проблема может быть переформулирована в более узкой форме и оставлена открытой (в последнем случае автору контрпримера может быть выплачен небольшой приз)[3][4].
Теория Янга — Миллса[править | править код]
Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы квантовая теория Янга — Миллса для пространства (четырёхмерного пространства-времени) существует и имеет ненулевую спектральную щель. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.
Существование и гладкость решений уравнений Навье — Стокса[править | править код]
Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.
Гипотеза Бёрча — Свиннертон-Дайера[править | править код]
Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.
Примечания[править | править код]
- ↑ Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman Архивировано 22 марта 2010 года. (англ.). Пресс-релиз математического института Клэя.
- ↑ «Посчитал и отказался». Российский математик Григорий Перельман отказался от премии в $1 млн за решение одной из математических задач тысячелетия. Архивная копия от 26 октября 2014 на Wayback Machine Газета.ru
- ↑ Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld.
- ↑ Rules for the Millennium Prizes Архивная копия от 10 декабря 2011 на Wayback Machine
Ссылки[править | править код]
- Задачи тысячелетия (англ.)
- А. М. Вершик «Что полезно математике? Размышления о премиях Clay Millenium»
- Великий вызов тысячелетия в математике (англ.)
- Devlin, Keith J. (2002), The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, Basic Books, ISBN 0-465-01729-0
- Carlson, James; Jaffe, Arthur; Wiles, Andrew, eds. (2006), The Millennium Prize Problems, Providence, RI: Американское математическое общество и математический институт Клэя, ISBN 978-0-8218-3679-8