Кривизна
Кривизна́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт локальное совпадение изучаемого «объекта» с «плоским» объектом.
В этой статье приводятся только несколько простейших примеров определений понятия кривизны.
Кривизна кривой[править | править код]
Кривизна кривой, заданной параметрически[править | править код]
Пусть — регулярная кривая в -мерном евклидовом пространстве, параметризованная её длиной . Тогда
называется кривизной кривой в точке , здесь обозначает вторую производную по . Вектор
называется вектором кривизны в точке .
Очевидно, это определение можно переписать через вектор касательной :
где одна точка над буквой означает первую производную по s.
Для кривой, заданной параметрически, в общем случае кривизна выражается формулой
- ,
где и соответственно обозначают первую и вторую производную радиус-вектора в требуемой точке по параметру (при этом под для кривой в трехмерном пространстве можно понимать векторное произведение, для кривой в двумерном пространстве — псевдоскалярное произведение, а для кривой в пространстве произвольной размерности — внешнее произведение).
Связанные понятия[править | править код]
Величина, обратная кривизне кривой (), называется радиусом кривизны; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется центром кривизны. Если кривизна кривой равна нулю, то соприкасающаяся окружность вырождается в прямую.
Кривые на плоскости[править | править код]
Для кривых на плоскости имеет место дополнительная формула, используемая в тех случаях, когда кривая задана не параметрически, а как геометрическое место точек, удовлетворяющих одному уравнению.
Пусть — регулярная кривая на евклидовой плоскости с координатами , заданная уравнением с дважды непрерывно дифференцируемой функцией . Тогда её кривизна в точке вычисляется по формуле[1]
В частности, если кривая задана уравнением , её кривизна вычисляется по формуле
Для того, чтобы кривая совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы её кривизна (или вектор кривизны) во всех точках тождественно равнялась нулю.
Ориентированная кривизна плоской кривой[править | править код]
Если кривая лежит в одной плоскости, её кривизне можно приписать знак. Такая кривизна часто называется ориентированной. Это можно сделать следующим образом: если при движении точки в сторону возрастания параметра вращение вектора касательной происходит против часовой стрелки, то кривизна считается положительной, если по часовой стрелке, — отрицательной. Ориентированная кривизна выражается формулой
Знак кривизны зависит от выбора параметризации и не имеет геометрического смысла. Геометрический смысл имеет изменение знака кривизны при переходе через некоторую точку (так называемая точка перегиба) или сохранение знака на некотором участке (характер выпуклости кривой).
Механическая интерпретация[править | править код]
Интуитивно кривизну можно понимать с помощью следующей механической интерпретации
Предположим материальная точка движется вдоль плоской кривой. Тогда модуль нормальной составляющей ускорения равен
где — кривизна кривой, — скорость точки[3].
Заметим, что кривизна кривой используется как физическая величина, имеет размерность обратную к единице длины (в системе СИ, это 1/м).
Кривизна поверхности[править | править код]
Пусть есть регулярная поверхность в трёхмерном евклидовом пространстве.
Пусть — точка
- — касательная плоскость к в точке
- — единичная нормаль к в точке
- а — плоскость, проходящая через и некоторый единичный вектор в
Кривая получающаяся как пересечение плоскости с поверхностью называется нормальным сечением поверхности в точке в направлении Величина
- ,
где обозначает скалярное произведение, а — вектор кривизны в точке , называется нормальной кривизной поверхности в направлении . С точностью до знака нормальная кривизна равна кривизне кривой .
В касательной плоскости существуют два перпендикулярных направления и такие, что нормальную кривизну в произвольном направлении можно представить с помощью так называемой формулы Эйлера:
где — угол между этим направлением и , a величины и нормальные кривизны в направлениях и , они называются главными кривизнами, а направления и — главными направлениями поверхности в точке . Главные кривизны являются экстремальными значениями нормальных кривизн. Структуру нормальных кривизн в данной точке поверхности удобно графически изображать с помощью индикатрисы Дюпена.
Величина
называется средней кривизной поверхности.[4] (Иногда используется другое определение: .[5][6])
Величина
называется гауссовой кривизной или полной кривизной поверхности.
Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
См. также[править | править код]
- Аффинная кривизна
- Дифференциальная геометрия кривых
- Дифференциальная геометрия поверхностей
- Кривизна римановых многообразий
- Поверхность
- Тензор кривизны
- Форма кривизны
Литература[править | править код]
- Виленкин Н. О кривизне // Квант. — 1992. — № 4. — С. 2-9, 15.
- Громов М. Знак и геометрический смысл кривизны. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — 128 с. — ISBN 5-93972-020-X.
- Погорелов А. В. Дифференциальная геометрия (6-е издание). М.: Наука, 1974.
- Рашевский П. К. Курс дифференциальной геометрии (3-е издание). М.-Л.: ГИТТЛ, 1950.
- Табачников С. Л. О кривизне // Квант. — 1989. — № 5. — С. 15-21, 42.
Примечания[править | править код]
- ↑ Goldman, R. Curvature formulas for implicit curves and surfaces // Computer Aided Geometric Design. — 2005. — Т. 22, № 7. — С. 632—658. — doi:10.1016/j.cagd.2005.06.005.
- ↑ Шнейдер В. Е. и др. Краткий курс высшей математики. Учеб. пособие для втузов. М., «Высш. школа» c. 368 . Дата обращения: 26 мая 2020. Архивировано 15 января 2022 года.
- ↑ Математика, её содержание, методы и значение (в трёх томах). — АН СССР, 1956. — Т. 2. — С. 111, 113. — 397 с.
- ↑ Мищенко А. С, Фоменко А. Т. Краткий курс дифференциальной геометрии и топологии. — М.: ФИЗМАТЛИТ, 2004.
- ↑ Топоногов, В. А. Дифференциальная геометрия кривых и поверхностей. — Физматкнига, 2012. — ISBN 978-5-89155-213-5. Архивировано 11 января 2021 года.
- ↑ Чернавский А. В. Дифференциальная геометрия, 2-й курс. Архивировано 11 января 2021 года.