Лоренц-ковариантность
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца[1]. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, т.е. инвариантной относительно полной ортохронной неоднородной группы Лоренца.[2] Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
Терминология[править | править код]
Лоренц-инвариантность и релятивистская инвариантность — синонимы. Функция Лагранжа из которой получаются уравнения поля должна быть инвариантна относительно полной группы Лоренца. В это понятие включают преобразования Лоренца и трансляции по всем четырём осям[3].
Лоренц-ковариантность физических законов[править | править код]
Лоренц-ковариантность физических законов — конкретизация принципа относительности (то есть постулируемого требования независимости результатов физических экспериментов и записи уравнений от выбора конкретной системы отсчёта). Исторически эта концепция стала ведущей при включении в сферу действия принципа относительности (раньше формулировавшегося с применением не преобразования Лоренца, а преобразования Галилея) максвелловской электродинамики, уже тогда лоренц-ковариантную и не имевшую видимых возможностей переделки для ковариантности относительно преобразований Галилея, что привело к распространению требования лоренц-ковариантности и на механику и вследствие этого к изменению последней.
Преобразования Лоренца удобно рассматривать как вращения и специальные преобразования в четырёхмерном пространстве и использовать для их описания векторный и тензорный анализ. Благодаря этому запись систем математических уравнений, описывающих законы природы, в векторной и тензорной форме, позволяет сразу же определить их лоренц-ковариантность, не выполняя преобразование Лоренца.[4]
«Ковариантность» vs «инвариантность»[править | править код]
В последнее время наметилось вытеснение термина лоренц-ковариантность термином лоренц-инвариантность, который всё чаще применяется равно и к законам (уравнениям), и к величинам [источник не указан 4696 дней]. Трудно сказать, является ли это уже нормой языка или всё же, скорее, некоторой вольностью употребления. Однако в более старой литературе[какой?] имелась тенденция строгого разграничения этих терминов: первый (ковариантность) употреблялся по отношению к уравнениям и многокомпонентным величинам (представлениям тензоров, в том числе векторов, и самим тензорам, так как часто не проводилось терминологической грани между тензором и набором его компонент), подразумевая согласованное изменение компонент всех входящих в равенства величин или просто согласованное друг с другом изменение компонент разных тензоров (векторов); второй же (инвариантность) применялся, как более частный, к скалярам (также к скалярным выражениям), подразумевая простую неизменность величины.
Примеры[править | править код]
Скаляры[править | править код]
Синонимом слов лоренц-инвариантная величина в 4-мерном пространственно-временном формализме является термин скаляр, который для полной конкретизации подразумеваемого контекста иногда называют лоренц-инвариантным скаляром.
- Скорость света в вакууме.
- при равномерном движении:
- в общем случае:
- где — величина трехмерной скорости, причем подразумевается, что всюду
- Действие для массивной бесструктурной точечной частицы массы m:
- Электромагнитные инварианты (из теории Максвелла):
- Волновой оператор (оператор Даламбера):
- (при данном выборе сигнатуры метрики Минковского η приведенный вид оператора совпадает с традиционным определением оператора Даламбера с точностью до знака).
- Электрический заряд
- Постоянная Планка
- Энтропия
- Постоянная Больцмана
- Фаза электромагнитной волны
4-векторы[править | править код]
-
- где
Тензоры[править | править код]
См. также[править | править код]
- Преобразования Лоренца
- Принцип относительности
- Общековариантность
- Калибровочная инвариантность
- Ковариантность и контравариантность (математика)
Примечания[править | править код]
- ↑ Эйнштейн А. К проблеме относительности // Альберт Эйнштейн Собр. науч. тр. в 4 т. — М. Наука, 1965. — т. 1, с. 30
- ↑ Ломсадзе Ю. М. Теоретико-групповое введение в физику элементарных частиц. — М., Высшая школа, 1962. — c. 114
- ↑ Боголюбов и Ширков, 1984, с. 18.
- ↑ Паули, 1983, с. 42.
Литература[править | править код]
- Паули В. Теория относительности. — М.: Наука, 1983. — 336 с.
- Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. — М.: Наука, 1984. — 600 с.