Неравенство треугольника

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда меньше суммы длин двух его других сторон (или равносильная формулировка — длина наибольшей стороны меньше суммы длин двух других сторон).

Евклидова геометрия[править | править код]

Длина любой стороны треугольника не превосходит сумму длин двух других.

Неравенство

выполняется в любом треугольнике . Причём равенство достигается только тогда, когда треугольник вырожден, и точка лежит строго между и .

Евклид в Началах доказывает неравенство треугольника следующим образом. Сначала доказывается теорема о том, что внешний угол треугольника больше внутреннего угла, с ним не смежного. Из неё выводится теорема о том, что против большей стороны треугольника лежит больший внутренний угол. Далее, методом от противного доказывается теорема о том, что против большего внутреннего угла треугольника лежит большая сторона. А из этой теоремы выводится неравенство треугольника.

Нормированное пространство[править | править код]

Пусть  — нормированное векторное пространство, где  — произвольное множество, а  — определённая на норма. Тогда по определению последней справедливо:

Гильбертово пространство[править | править код]

В гильбертовом пространстве, неравенство треугольника является следствием неравенства Коши — Буняковского.

Метрическое пространство[править | править код]

Пусть  — метрическое пространство, где  — произвольное множество, а  — определённая на метрика. Тогда по определению последней

Вариации и обобщения[править | править код]

Обратное неравенство треугольника[править | править код]

Следствием неравенства треугольника в нормированном и метрическом пространствах являются следующие неравенства:

Неравенство треугольника для трёхгранного угла[править | править код]

Каждый плоский угол выпуклого трёхгранного угла меньше суммы двух других его плоских углов.

Произвольное число точек[править | править код]

Обозначим расстояние между точками и . Тогда имеет место следующее неравенство: . Оно получается последовательным применением неравенства треугольника для трех точек: [1]

См. также[править | править код]

Примечания[править | править код]

  1. Шилов Г. Е. Математический анализ. Специальный курс. — М.: Физматлит, 1961. — C. 28