Газовые гиганты
Га́зовые гига́нты — планеты-гиганты, состоящие в основном из водорода и гелия[1]. Планеты этого типа имеют небольшую плотность, короткий период суточного вращения, и, следовательно, значительное сжатие у полюсов.
В Солнечной системе к газовым гигантам относят Юпитер и Сатурн. Они состоят в основном из водорода и гелия, а более тяжелые элементы составляют от 3 до 13 % массы[2].
Терминология[править | править код]
Термин «газовый гигант» был придуман в 1952 году писателем-фантастом Джеймсом Блишем[3] и первоначально использовался для обозначения всех планет-гигантов. Хотя обычно понятия «планета-гигант» и «газовый гигант» считаются синонимами, первое — более общее. Так, ледяные гиганты являются планетами-гигантами, но не газовыми гигантами. Основное отличие этих классов — химический состав: массовая доля водорода и гелия у газовых гигантов составляет более 90 %, у ледяных — 15—20 %, а также масса — газовые гиганты тяжелее ледяных[4]. В 1990-х годах стало известно, что Уран и Нептун представляют собой отдельный класс планет-гигантов, куда входят состоящие в основном из более тяжелых летучих веществ (их называют «льдиками»). По этой причине Уран и Нептун часто относят к отдельной категории ледяных гигантов[5].
Газовые гиганты иногда называют «неудавшимися звёздами» за наибольшую массу среди планет и похожий химический состав, но это в большой степени преувеличение, так как значение общепринятой границы между планетами и коричневыми карликами составляет 13 MJ[6].
Классификация[править | править код]
Распространено деление газовых гигантов на «холодные юпитеры» и «горячие юпитеры», но также существует система классификации по Сударскому. Она делит газовые гиганты на пять классов, учитывая температуру и, следовательно, химический состав верхних слоёв.
-
Класс I, гигант с облаками аммиака
-
Класс II, гигант с облаками водяного пара
-
Класс III, безоблачный газовый гигант
-
Класс IV, гигант с облаками из щёлочи
-
Класс V, горячий юпитер
Формирование[править | править код]
Согласно гипотезе происхождения Солнечной системы, планеты-гиганты образовались позже, чем планеты земной группы. К этому времени большая часть тугоплавких веществ (окислы, силикаты, металлы) уже выпали из газовой фазы, и из них образовались внутренние планеты (от Меркурия до Марса). Существует гипотеза о пятом газовом гиганте, вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или за её пределы (ставшим планетой-сиротой). Последней такой гипотезой является гипотеза о девятой планете Брауна и Батыгина.
Характеристики[править | править код]
Как уже было сказано, газовые гиганты состоят преимущественно из водорода и гелия. Их массы довольно велики: массы двух газовых гигантов Солнечной системы, Юпитера и Сатурна, равны соответственно 317 и 95 земным массам. Теоретическим верхним пределом массы будет 13 MJ, так как при большей массе в ядре начнут идти термоядерные реакции и объект перейдёт в класс коричневых карликов. Нижний предел пока точно не установлен, но должен существовать, так как небольшие небесные тела не способны удержать такой лёгкий газ, как водород.
Строение[править | править код]
Модели внутреннего строения газовых планет предполагают наличие нескольких слоёв. На определённой глубине давление в атмосферах газовых планет достигает высоких значений, достаточных для перехода водорода в жидкое состояние. Если планета достаточно велика, то ещё ниже может размещаться слой металлического водорода, электрические токи в котором порождают мощное магнитное поле планеты, как у Юпитера и Сатурна. Кроме того, считается, что газовые планеты имеют также относительно небольшое каменное или металлическое ядро.
Как показали измерения спускаемого аппарата «Галилео», давление и температура быстро растут уже в верхних слоях газовых планет. На глубине 130 км в атмосфере Юпитера температура составила около 145 °C, давление — 24 атм. Газовые планеты излучают заметно больше тепла, чем предсказывают расчёты. Предложены модели, допускающие выделение крайне незначительных количеств тепла внутри Юпитера при реакциях термоядерного синтеза, но эти модели не имеют наблюдательного подтверждения[7]. Альтернативная гипотеза объясняет этот эффект сильнейшими полярными сияниями[8].
Атмосфера[править | править код]
В атмосферах газовых планет дуют мощные ветры скоростью до нескольких тысяч километров в час (скорость ветра на экваторе Сатурна составляет 1800 км/ч). Имеются постоянные атмосферные образования, представляющие собой гигантские вихри: например, Большое красное пятно (размером в несколько раз больше Земли) на Юпитере наблюдают уже более 300 лет. Имеются также более мелкие пятна на Сатурне.
Спутники[править | править код]
У Юпитера и Сатурна открыто наибольшее количество спутников среди всех планет Солнечной системы. Для газовых планет Солнечной системы отношение суммарной массы их спутников к массе планеты составляет около 0,01 % (1 к 10 000). Для объяснения этого факта разработаны модели формирования спутников из газопылевых дисков с большим количеством газа (при этом действует механизм, ограничивающий рост спутников).
Экзопланеты[править | править код]
Из-за больших размеров и масс газовые гиганты наиболее просты в обнаружении любыми способами из всех типов экзопланет. Крупнейшая из них — TrES-4 A b — относится к горячим юпитерам.
Примечания[править | править код]
- ↑ D'Angelo, G. Formation of Giant Planets // Handbook of Exoplanets / G. D'Angelo, Lissauer, J. J.. — Springer International Publishing AG, part of Springer Nature, 2018. — P. 2319–2343. — ISBN 978-3-319-55332-0. — doi:10.1007/978-3-319-55333-7_140.
- ↑ The Interior of Jupiter, Guillot et al., in Jupiter: The Planet, Satellites and Magnetosphere, Bagenal et al., editors, Cambridge University Press, 2004
- ↑ Historical Dictionary of Science Fiction, Entry for gas giant n. Архивная копия от 10 марта 2022 на Wayback Machine
- ↑ Типы экзопланет . Дата обращения: 10 марта 2020. Архивировано 24 июня 2011 года.
- ↑ National Aeronautics and Space Administration website, Ten Things to Know About Neptune Архивная копия от 3 марта 2008 на Wayback Machine
- ↑ Brown dwarfs: Failed stars, super Jupiters . Дата обращения: 10 марта 2020. Архивировано 8 мая 2013 года.
- ↑ Ouyed R., Fundamenski W. R., Cripps G. R., Sutherland P. G. D-D Fusion in the Interior of Jupiter? (англ.) // The Astrophysical Journal. — 1998-07-01. — Vol. 501, iss. 1. — P. 367. — ISSN 0004-637X. — doi:10.1086/305797. Архивировано 23 января 2023 года.
- ↑ Jupiter’s intense auroras superheat its upper atmosphere (амер. англ.) (16 августа 2021). Дата обращения: 15 марта 2023. Архивировано 15 марта 2023 года.
Ссылки[править | править код]
- Как разложить планеты по полочкам или Астрономии требуются Линнеи // «Астронет»
- D'Angelo, G. Formation of Giant Planets // Handbook of Exoplanets / G. D'Angelo, Lissauer, J. J.. — Springer International Publishing AG, part of Springer Nature, 2018. — P. 2319–2343. — ISBN 978-3-319-55332-0. — doi:10.1007/978-3-319-55333-7_140.
- Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.; Fortney, Jonathan J.; Saumon, Didier (2013). "Deuterium Burning in Massive Giant Planets and Low-mass Brown Dwarfs Formed by Core-nucleated Accretion". The Astrophysical Journal. 770 (2): 120. arXiv:1305.0980. Bibcode:2013ApJ...770..120B. doi:10.1088/0004-637X/770/2/120.
- Burgasser, Adam J. Brown dwarfs: Failed stars, super Jupiters . Physics Today (июнь 2008). Дата обращения: 11 января 2016. Архивировано из оригинала 8 мая 2013 года.