Теория БКШ
Теория Бардина — Купера — Шриффера (теория БКШ) — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа[1][2].
Электроны вблизи поверхности Ферми могут испытывать эффективное притяжение, взаимодействуя друг с другом посредством фононов. Надо ввести уточнение, притягиваются только те электроны, энергия которых отличается от энергии электронов на поверхности Ферми не более чем на величину , где — дебаевская частота , остальные электроны не взаимодействуют. Эти электроны объединяются в пары, называемые часто куперовскими. Куперовские пары, в отличие от отдельных электронов, обладают рядом свойств, характерных для бозонов, которые при охлаждении могут переходить в одно квантовое состояние. Можно сказать, что эта особенность позволяет парам двигаться без столкновения с решёткой и оставшимися электронами, то есть без потерь энергии.
Куперовские пары[править | править код]
Леон Купер рассмотрел образование связного состояния двух электронов имеющих противоположные спины и скорости[3] и предположил, что эти пары могут быть ответственны за сверхпроводящее состояние. Он указал на возможность образования связного состояния двух электронов на уровне Ферми при обмене фононами, которое качественно можно рассмотреть в виде динамического взаимодействия электронов проводимости с колебаниями ионной кристаллической решёткой. Когда электрон пролетает с\рядом с ионами он притягивает ионы и создаёт за собой положительную плотность заряда которая притягивает другой электрон противоположный по спину и скорости (в этом случае взаимодействие максимально).
Купер рассмотрел двухчастичную задачу в системе центра масс сводя её к одночастичной задаче в периодическом поле кристалла с уравнением и переходя от переменных для координат электронов и к координатам для центра масс и расстояния между частицами и (для волновых векторов от и к и ), а также энергии
для волновой функции
Предполагая матричные элементы постоянными для волновых векторов вблизи уровня Ферми и нулевыми в области отличной от уровня Ферми более чем на Дебаевскую энергию можно получить уравнение для собственных значений
где — плотность состояний куперовских пар с моментом K, которая предполагается постоянной. Выражение для энергии связи куперовской пары выражается через энергию Дебая[4]
Важные уточнения[править | править код]
- Отметим, что в теории БКШ понятие куперовской пары четко не определено и в явном виде не вводится. Куперовская пара хорошо определена лишь в двухчастичной задаче Купера, которая считается вспомогательной для построения многочастичной теории БКШ.[источник не указан 1030 дней]
Примечания[править | править код]
- ↑ Н. Н. Боголюбов. О новом методе в теории сверхпроводимости (неопр.) // Журнал экспериментальной и теоретической физики. — 1958. — Т. 34(1). — С. 58.
- ↑ Боголюбов Н. Н., Толмачев В. В., Ширков Д. В. Новый метод в теории сверхпроводимости. — М.: Изд-во АН СССР, 1958.
- ↑ Cooper, Leon N. Bound electron pairs in a degenerate Fermi gas (англ.) // Physical Review : journal. — 1956. — Vol. 104, no. 4. — P. 1189—1190. — doi:10.1103/PhysRev.104.1189. — .
- ↑ Cooper, 1956.