Точка Микеля
Точка Микеля — одна из замечательных точек четырёхугольника.
Определение[править | править код]
Пусть четыре прямые расположены так (в общем положении), что при их пересечении образуется четыре треугольника. Тогда описанные вокруг этих треугольников окружности имеют общую точку, которая называется точкой Микеля этой конфигурации прямых.
Замечание[править | править код]
- Утверждение, что эти четыре окружности пересекаются в одной точке, называется теоремой Микеля — Штейнера о четырёхстороннике[1].
Свойства[править | править код]
- Центры описанных окружностей указанных выше четырёх треугольников (синие точки на рисунке) лежат на одной (красной) окружности, проходящей через точку Микеля (зелёная на рис. выше).
- Четырёхугольник , образованный четырьмя данными прямыми , , и , вписан тогда и только тогда, когда точка Микеля лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника), то есть когда лежит на .
История[править | править код]
Этот результат анонсирован Якобом Штейнером[2]. Полное доказательство было дано Микелем[1].
Вариации и обобщения[править | править код]
Теорема Микеля для пятиугольника (для пятиконечной звезды)[править | править код]
Пусть дан выпуклый пятиугольник . Продолжим все его пять сторон до тех пор, пока они не пересекутся в пяти точках , , , , (образовав пятиконечную звезду). Опишем пять окружностей около пяти треугольников , , , и . Тогда другие их точки взаимного пересечения (кроме , , , , ), а именно новые точки: , , , и лежат на одной окружности (принадлежат одной окружности)[3] (см. рис.). Обратный результат известен как теорема о пяти кругах.
Теорема Микеля о шести окружностях[править | править код]
Пусть на окружности заданы четыре точки , , и , и четыре окружности попарно пересекаются в этих точках, а также ещё в четырёх других точках , , и . Тогда последние четыре точки также лежат на общей окружности. Эта теорема известна как «теорема о шести окружностях»[4] (см. рис.).
Эту теорему иногда называют теоремой о четырёх окружностях и приписывают Якобу Штейнеру, хотя единственное известное опубликованное доказательство было дано Микелем[5].
Уэллс ссылается на эту теорему как на «теорему Микеля»[6].
Трёхмерный аналог теоремы Микеля[править | править код]
Есть также трёхмерный аналог, в котором четыре сферы, проходящие через точки тетраэдра и точки на рёбрах тетраэдра, пересекаются в одной общей точке . Уэлс, упоминая Микеля, ссылается на эту теорему как на теорему Пиво́.[7]
См. также[править | править код]
- Точка Понселе
- Теорема Микеля — другой результат Микеля
- Прямая Обера
Примечания[править | править код]
- ↑ 1 2 Ostermann, Wanner, 2012, p. 96.
- ↑ Steiner, J. (1827/1828), "Questions proposées. Théorème sur le quadrilatère complet", Annales de math., 18: 302—304
{{citation}}
: Википедия:Обслуживание CS1 (числовые имена: authors list) (ссылка) - ↑ A high school teacher in the French countryside (Nantua) according to Ostermann & Wanner 2012 (англ.). — Ostermann & Wanner, 2012. — P. 94—97.
- ↑ A high school teacher in the French countryside (Nantua) according to Ostermann & Wanner 2012 (англ.). — Ostermann & Wanner, 2012. — P. 94.
- ↑ A high school teacher in the French countryside (Nantua) according to Ostermann & Wanner 2012 (англ.). — Ostermann & Wanner, 2012. — P. 352.
- ↑ Wells, David. The Penguin Dictionary of Curious and Interesting Geometry (англ.). — New York: Penguin Books, 1991. — P. 151—152.
- ↑ Wells, David. The Penguin Dictionary of Curious and Interesting Geometry (англ.). — New York: Penguin Books, 1991. — P. 184.
Литература[править | править код]
- Коксетер Г. С. М., Грейтцер С. Л. Новые встречи с геометрией. — М.: Наука, 1978. — 224 с. — (Выпуск 14 серии "Библиотека математического кружка"). — 148 000 экз.
- Forder, H.G. (1960), Geometry, London: Hutchinson
- Ostermann, Alexander; Wanner, Gerhard (2012), Geometry by its History, Springer, ISBN 978-3-642-29162-3
- Pedoe, Dan (1988) [1970], Geometry / A Comprehensive Course, Dover, ISBN 0-486-65812-0
- Smart, James R. (1997), Modern Geometries (5th ed.), Brooks/Cole, ISBN 0-534-35188-3
- Wells, David (1991), The Penguin Dictionary of Curious and Interesting Geometry, New York: Penguin Books, ISBN 0-14-011813-6, Zbl 0856.00005
В статье не хватает ссылок на источники (см. рекомендации по поиску). |