Кристаллография

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Кристаллогра́фия — наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогией, физикой твёрдого тела и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.

Задачей кристаллографии является изучение строения, физических свойств кристаллов, условий их образования, разработка методов исследования и определения вещества по кристаллической форме, физическим особенностям и тому подобного. В кристаллографии выделяют направления работ:

История науки[править | править код]

Почтовая марка СССР, 1966 год:
VII международный конгресс кристаллографов

Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.

Первым в России предпринял точные кристаллографические исследования Н. И. Кокшаров, а получил полную классификацию кристаллографической группы Е. С. Фёдоров.

В 1947 году основан Международный союз кристаллографов.

Основные понятия кристаллографии[править | править код]

Для описания симметрии многогранников и кристаллических решёток в кристаллографии установлена следующая иерархия терминов:

Кроме того, используются термины:

Пирамиды роста[править | править код]

Пирами́ды ро́ста — пирамиды, основаниями которых служат грани кристалла, а общей вершиной — начальная точка роста.

Реальный кристалл во многих случаях целесообразно рассматривать как совокупность пирамид роста, поскольку очень часто физические свойства пирамид роста с основаниями, принадлежащим к различным простым формам, оказываются различными. Это подтверждается существованием у многих природных кристаллов структуры песочных часов, случаями закономерной оптической аномалии у кристаллов кубической системы и пр.

Симметрия[править | править код]

Симме́три́я кристаллов (др.-греч. συμμετρία «соразмерность», от μετρέω — «мерю») — закономерная повторяемость в пространстве одинаковых граней, рёбер и углов фигуры, которая может совмещаться сама с собой в результате одного или нескольких отражений. Для описания симметрии пользуется воображаемыми образами — точками, прямыми, плоскостями, называемыми элементами симметрии.

Плоскость симметрии (P) — это воображаемая плоскость, которая делит фигуру на две симметрично равные части, расположенные друг относительно друга как предмет и его зеркальное отражение. Ось симметрии (L) — прямая линия, при вращении вокруг которой повторяются равные части фигуры, то есть она самосовмещается. Число совмещений при повороте на 360° определяет порядок оси симметрии (n). Центр симметрии (С) — точка внутри кристалла, в которой пересекаются и делятся пополам все линии, соединяющие соответственные точки на его поверхности.

Вид симметрии
Категория Низшая Средняя Высшая
Кристаллическая система Триклинная Моноклинная Ромбическая Тетрагональная Тригональная Гексагональная Кубическая
Примитивный L1 L4 L3 L6 4L33L2
Центральный C L4PC L3C = Ł3 L6PC 4L33L23PC
Планальный P L22P L44P L33P L66P 44L36P
Аксиальный L2 3L2 L44L2 L33L2 L66L2 3L44L36L2
План-аксиальный L2PC 3L23PC L44L25PC L33L23PC = Ł33L23P L66L27PC 3L44L36L29PC
«Инверсионно-примитивный» Ł4 Ł6 =L3P
«Инверсионно-планальный» Ł42L22P Ł63L23P

2014 — Международный год кристаллографии[править | править код]

3 июля 2012 года Генеральная Ассамблея ООН на своей 66-й сессии постановила провозгласить 2014 год Международным годом кристаллографии.

В обоснование принятого решения в резолюции Генеральной Ассамблеи подчёркивается роль изучения и прикладного использования кристаллографии в современном мире и указывается на важное значение научных достижений в области кристаллографии. Упоминается также, что в 2014 году отмечается столетие зарождения современной кристаллографии[2].

Ведущую роль в проведении года кристаллографии сыграл Международный союз кристаллографов[3].

См. также[править | править код]

Примечания[править | править код]

  1. Болдырев А. К. Кристаллография, ОНТИ.- М.- Л.- Грозный — Новосибирск: ГорГеоНефтеИздат, 1934
  2. Резолюция, принятая Генеральной Ассамблеей 3 июля 2012 года. ООН. Дата обращения: 5 февраля 2014. Архивировано из оригинала 22 февраля 2014 года.
  3. International year of crystallography Архивная копия от 9 февраля 2014 на Wayback Machine (англ.) Официальный сайт

Литература[править | править код]

  • Земятченский П. А. Кристаллология // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Уэвелль В. История индуктивных наук от древнейшего и до настоящего времени. В трёх томах. Т. III. История кристаллографии. СПб., 1869.
  • Шубников А. В. У истоков кристаллографии. М., 1972. - 52 с.
  • Шафрановский И. И. История кристаллографии в России. М. - Л., 1962. - 416 с.
  • Шафрановский И. И. История кристаллографии (с древнейших времён до начала XIX столетия). Л., «Наука», 1978. - 297 с.
  • Шафрановский И. И. Кристаллография в СССР: 1917—1991 / Отв. ред. Н. П. Юшкин. - СПб., 1996.
  • Burke J.G. Origins of the science of crystals. University of California, Los Angeles, 1966. 198 p.

Ссылки[править | править код]