Интеграл Лебега
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла равны. Однако существует большой класс функций, определённых на отрезке и интегрируемых по Лебегу, но неинтегрируемых по Риману. Также интеграл Лебега может иметь смысл для функций, заданных на произвольных множествах (интеграл Фреше).
Идея построения интеграла Лебега[1] состоит в том, что вместо разбиения области определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.
Определение[править | править код]
Интеграл Лебега определяют пошагово, переходя от более простых функций к сложным. Будем считать, что дано пространство с мерой , и на нём определена измеримая функция , где — борелевская -алгебра на вещественной оси.
Определение 1. Пусть — индикатор некоторого измеримого множества, то есть , где . Тогда интеграл Лебега функции по определению:
Определение 2. Пусть — простая функция, то есть , где , а — конечное разбиение на измеримые множества. Тогда
- .
Определение 3. Пусть теперь — неотрицательная функция, то есть . Рассмотрим все простые функции , такие что . Обозначим это семейство . Для каждой функции из этого семейства уже определён интеграл Лебега. Тогда интеграл от задаётся формулой:
Наконец, если функция произвольного знака, то её можно представить в виде разности двух неотрицательных функций. Действительно, легко видеть, что:
где
- .
Определение 4. Пусть — произвольная измеримая функция. Тогда её интеграл задаётся формулой:
- .
Определение 5. Пусть наконец произвольное измеримое множество. Тогда по определению
- ,
где — индикатор-функция множества .
Пример[править | править код]
Рассмотрим функцию Дирихле , заданную на , где — борелевская σ-алгебра на , а — мера Лебега. Эта функция принимает значение в рациональных точках и в иррациональных. Легко увидеть, что не интегрируема в смысле Римана. Однако, она является простой функцией на пространстве с конечной мерой, ибо принимает только два значения, а потому её интеграл Лебега определён и равняется:
Действительно, мера отрезка равна 1, и так как множество рациональных чисел счётно, то его мера равна 0, а значит мера иррациональных чисел равна .
Замечания[править | править код]
- Так как , измеримая функция интегрируема по Лебегу тогда и только тогда, когда функция интегрируема по Лебегу. Это свойство не выполняется в отношении интеграла Римана;
- В зависимости от выбора пространства, меры и функции, интеграл может быть конечным или бесконечным. Если интеграл функции конечен, то функция называется интегрируемой по Лебегу или суммируемой;
- Если функция определена на вероятностном пространстве и измерима, то она называется случайной величиной, а её интеграл называют математическим ожиданием или средним. Случайная величина интегрируема, если она имеет конечное математическое ожидание.
Свойства[править | править код]
- Интеграл Лебега линеен, то есть
- ,
- где — произвольные константы;
- Интеграл Лебега сохраняет неравенства, то есть если почти всюду, измерима и интегрируема, то интегрируема и , и более того
- ;
- Интеграл Лебега не зависит от поведения функции на множестве меры нуль, то есть если почти всюду, то
- .
Интегральные суммы Лебега[править | править код]
Интегральными суммами Лебега для функции и меры называются суммы вида
- ,
где — разбиение области значений функции .
Каждая такая сумма является интегралом Лебега от простой функции, аппроксимирующей функцию - в каждой точке она принимает одно из значений (а именно, на подмножестве ). Поэтому, если функция интегрируема по Лебегу, эти суммы сходятся к её интегралу, когда , , и диаметр разбиения стремится к нулю.
Особенность интегральных сумм Лебега состоит в том, что для их вычисления не требуется вычислять значения интегрируемой функции — нужна на самом деле лишь функция распределения её значений:
Тогда интегральные суммы Лебега для функции и меры становятся интегральными суммами Римана-Стилтьеса для функции и функции распределения :
- .
Если функция распределения имеет плотность: , то интегральные суммы Лебега преобразуются в интегральные суммы Римана:
- .
Поскольку функции распределения естественным образом возникают в теории вероятностей, статистической и квантовой физике, то и интегральные суммы Лебега фактически используются для вычисления интеграла Лебега, в основном, в приложениях этих теорий. Чаще же всего интеграл Лебега вычисляется как равный ему интеграл Римана (в тех случаях, когда последний имеет смысл).
Сходимость интегралов Лебега от последовательностей функций[править | править код]
Примечания[править | править код]
- ↑ Lebesgue, Henri (1904). «Leçons sur l’intégration et la recherche des fonctions primitives». Paris: Gauthier-Villars.
Литература[править | править код]
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.
- Треногин В. А. Функциональный анализ. — М.: Наука, 1980. — 495 с.
- Шилов Г.Е. Математический анализ. Специальный курс. — 2-е. — М.: Физматлит, 1961. — 436 с.
- Фролов Н. А. Теория функций действительного переменного. — 2-е. — М.: ГУПИМПР, 1961. — 173 с.
Для улучшения этой статьи желательно:
|