Кубооктаэдр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Кубооктаэдр
(вращающаяся модель, 3D-модель)
(вращающаяся модель, 3D-модель)
Тип архимедово тело
Свойства выпуклый, изогональный, квазиправильный
Комбинаторика
Элементы
14 граней
24 ребра
12 вершин
Χ = 2
Грани 8 треугольников
6 квадратов
Конфигурация вершины 3.4.3.4
Двойственный многогранник ромбододекаэдр
Классификация
Обозначения aC, aaT
Символ Шлефли r{3,4}, rr{3,3}
Группа симметрии Oh (октаэдрическая)
Логотип Викисклада Медиафайлы на Викискладе

Кубоокта́эдр[1][2] или кубокта́эдр[3] — полуправильный многогранник (архимедово тело) с 14 гранями, составленный из 8 правильных треугольников и 6 квадратов.

В каждой из его 12 одинаковых вершин сходятся две квадратных грани и две треугольных. Телесный угол при вершине равен

Кубооктаэдр имеет 24 ребра равной длины. Двугранный угол при любом ребре одинаков и равен

Кубооктаэдр можно получить из куба, «срезав» с него 8 правильных треугольных пирамид; либо из октаэдра, «срезав» с него 6 квадратных пирамид; либо как пересечение имеющих общий центр куба и октаэдра.

Иллюстрация Леонардо да Винчи к трактату Луки Пачоли «О божественной пропорции» (1509)

В координатах[править | править код]

Кубооктаэдр с длиной ребра можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными перестановками чисел

Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер.

Метрические характеристики[править | править код]

Если кубооктаэдр имеет ребро длины , его площадь поверхности и объём выражаются как

Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер в их серединах) —

Вписать в кубооктаэдр сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри кубооктаэдра с ребром (она будет касаться только всех квадратных граней в их центрах), равен

Расстояние от центра многогранника до любой треугольной грани превосходит и равно

Звёздчатые формы[править | править код]

Кубооктаэдр образует звёздчатые формы:

Заполнение пространства[править | править код]

Одними только кубооктаэдрами замостить трёхмерное пространство без промежутков и наложений нельзя, но это можно сделать с помощью кубооктаэдров вместе с другими многогранниками:

В природе и культуре[править | править код]

Одним из символов компьютерной игры Elite стала космическая станция в форме кубооктаэдра с люком на квадратной грани[4]. Впоследствии её внесли и в Elite: Dangerous[5].

Примечания[править | править код]

  1. Веннинджер, 1974, с. 20, 35.
  2. Люстерник, 1956, с. 183.
  3. Энциклопедия элементарной математики, 1963, с. 437, 435.
  4. Coriolis Station (Classic) в энциклопедии Elite Wiki (Архивная копия от 16 марта 2018 на Wayback Machine)
  5. Coriolis в энциклопедии Elite Dangerous Wiki (Архивная копия от 16 марта 2018 на Wayback Machine)

Литература[править | править код]

Ссылки[править | править код]