Локсодрома
Локсодрома, или локсодромия[1] (от др.-греч. «λοξός» — «косой», «наклонный» и «δρόμος» — «путь»[2]) — кривая на поверхности вращения, пересекающая все меридианы под постоянным углом, называемым локсодромическим путевым углом.
История[править | править код]
Введена в рассмотрение португальским математиком Нониусом в 1529 году[3].
В труде «Tiphys batavus» (1624) нидерландский математик Виллеброрд Снелл пересекающую все меридианы под постоянным углом кривую назвал «локсодромой», исследовал её. Работа состояла из двух частей — теоретической и практических упражнений с рекомендациями[4].
В геодезии и картографии[править | править код]
На поверхности Земли локсодромами являются все параллели (путевой угол может быть равен 90°, 270° и т. д.) и все меридианы (путевой угол 0°, 180° и т. д.). Локсодромы под остальными углами являются спиралями, совершающими неограниченное число витков, приближаясь к полюсам. Тем не менее, если путешественник будет двигаться по любой локсодроме (кроме параллелей) с постоянной скоростью не останавливаясь, то он обязательно придёт к одному из полюсов за конечное время. Картографическая проекция, в которой все локсодромы изображены прямыми, называется проекцией Меркатора.
В навигации[править | править код]
Если передвигаться с фиксированным путевым углом по Земле, которую условно принять за сферу или геоид, то траектория движения объекта и будет локсодромией[5]. Локсодрома не является кратчайшим путём между двумя пунктами (исключение — меридианы и экватор). Тем не менее, в старину суда и путешественники нередко двигались по локсодромам, так как идти под постоянным углом к Полярной звезде проще и удобнее. С изобретением компаса мореплаватели перешли на движение по «магнитным локсодромам», то есть по линиям с постоянным углом к магнитному северу, что дало возможность продолжать движение и в облачную погоду. Но как только были выяснены магнитные склонения во всех местах Земли, люди вновь перешли на обычные локсодромы. Даже в XX веке локсодромия использовалась при расчёте требуемого курса при прокладке маршрута самолётов и морских судов. Со временем, когда появились приборы с достаточной вычислительной мощностью для вычисления текущего требуемого путевого угла, начали активно применять ортодромию (кратчайший путь), особенно для дальних маршрутов самолётов[6].
Построение локсодромы сферы[править | править код]
Для того чтобы на полётных картах проложить локсодромический путь, необходимо соединить конечные точки маршрута прямой линией и измерить путевой угол у среднего меридиана. Точнее, локсодромический путевой угол рассчитывается как средний угол, снятый у начальной и конечной точек маршрута. После этого полученный путевой угол строят последовательно у всех меридианов на карте, начиная от пункта вылета. Полученная при построении ломаная линия практически близко подходит к локсодромии. Более точно локсодромический путевой угол может быть вычислен по формуле:
,
- где — искомый путевой угол;
- и — широты пунктов вылета и прибытия;
- и — долготы этих пунктов;
- — средняя широта перелёта.
Пример. Определить истинный локсодромический путевой угол при полёте из г. Реймса в г. Потсдам.
Решение. Определяем координаты:
- — Реймса
- — Потсдама
средняя широта ; . Следовательно,
- ,
- .
Полученный результат будет правильным, если конечная точка маршрута лежит в первой четверти (0 — 90°). Если конечная точка лежит во второй четверти (90° — 180°), искомый путевой угол получают, вычитая полученное число градусов из 180°. Если же конечная точка находится в третьей четверти (180° — 270°), к полученному углу прибавляют 180°, а если в четвёртой четверти (270° — 360°), то полученный угол вычитают из 360°.
Длина локсодромии в км определяется по формулам:
а) Для углов , близких к 0° или 180°,
- км,
где и — широты пунктов вылета и прибытия, выраженные в минутах, или
- км,
где и выражены в градусах.
б) Для углов , близких к 90° или 270°,
- км.
Разность между длинами локсодромии и ортодромии DS достигает своей максимальной величины при полёте вдоль параллели.
Так, например, длина локсодромии между Реймсом и Потсдамом из предыдущего примера может быть приближённо вычислена по формуле:
- км.
Формулы в декартовых координатах[править | править код]
Параметрические формулы, задающие локсодрому с путевым углом на сфере радиуса в декартовой системе координат, имеют вид:
где параметр изменяется от 0 до и является долготой точки. Здесь и — гиперболические косинус и тангенс.
См. также[править | править код]
Примечания[править | править код]
- ↑ Локсодромия // Морской энциклопедический справочник / Под ред. Н. Н. Исанина. — Ленинград: Судостроение, 1987. — Т. 1. — С. 398. — 512 с. — 30 000 экз.
- ↑ Исторический словарь галлицизмов русского языка. — М.: Словарное издательство ЭТС. Николай Иванович Епишкин. 2010
- ↑ Шаль, Мишель. Исторический обзор происхождения и развития геометрических методов. Гл. III, n. 39.
- ↑ MacTutor.
- ↑ Это нетрудно доказать, используя определения путевого угла и определение локсодромии.
- ↑ Для экономии топлива и сокращения времени в пути.
Ссылки[править | править код]
- Онлайн калькулятор: Путевой угол и расстояние между двумя точками по локсодроме (линии румба)
- Лаксодромия // Военная энциклопедия : [в 18 т.] / под ред. В. Ф. Новицкого … [и др.]. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.
- Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Локсодрома (англ.) — биография в архиве MacTutor.