Правильный шестиугольник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Шестиугольник
Правильный шестиугольник
Правильный шестиугольник
Тип Правильный многоугольник
Рёбра 6
Символ Шлефли {6}, t{3}
Диаграмма Коксетера — Дынкина node_16node
node_13node_1
Вид симметрии Диэдрическая группа (D6)
Площадь

Внутренний угол 120°
Свойства
выпуклый, вписанный, Равносторонний, равноугольный[en], изотоксальный
Логотип Викисклада Медиафайлы на Викискладе

Правильный шестиугольник (или гексагон от греч. εξάγωνο) — правильный многоугольник с шестью сторонами.

Свойства[править | править код]

  • Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности (), поскольку .
  • Все углы равны 120°.
  • Радиус вписанной окружности равен:
  • Периметр правильного шестиугольника равен:
  • Площадь правильного шестиугольника рассчитывается по формулам:
  • Шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).
  • Правильный шестиугольник со стороной является универсальной покрышкой, то есть всякое множество диаметра 1 можно покрыть правильным шестиугольником со стороной (лемма Пала)[1].

Построение[править | править код]

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения, предложенный Евклидом в «Началах», книга IV, теорема 15.

Построение правильного шестиугольника
Построение правильного шестиугольника

Правильный шестиугольник в природе, технике и культуре[править | править код]

Примечания[править | править код]

  1. А. М. Райгородский. Проблема Борсука. — М.: Издательство МЦНМО, 2006. — С. 9. — 56 с. — (Библиотека „Математическое просвещение“). — ISBN ISBN 5-94057-249-9. Архивировано 19 ноября 2010 года.

См. также[править | править код]

Ссылки[править | править код]